
COLLABORATIVE PROJECT 

A final project submitted to the University of Wales in partial fulfilment of the 

requirements of BA (Hons) Digital Media in Game Development 

 

 

June 2013 

 

MagnoBall 

 

Pavankumar Chopra 

 

 

2
nd

 Year UG – Game Development 

11UG03040 

 

 

ICAT, Design and Media College, 

Bangalore 

 

 

 

 



Contents 
 

High Concept ........................................................................................................................................... 3 

One Liner: ............................................................................................................................................ 3 

Core Tenets: ........................................................................................................................................ 3 

Game Genre ............................................................................................................................................ 3 

Re-playability .......................................................................................................................................... 3 

Target Audience ...................................................................................................................................... 3 

Game Play ............................................................................................................................................... 4 

Gameplay & Game Mechanics: ............................................................................................................... 4 

Character Description: ............................................................................................................................ 4 

Name: .................................................................................................................................................. 4 

Description: ......................................................................................................................................... 4 

Modelling Description: ........................................................................................................................ 4 

Animation Description: ....................................................................................................................... 4 

Level Description: .................................................................................................................................... 4 

UML DIAGRAMS ...................................................................................................................................... 5 

USE CASE DIAGRAM ............................................................................................................................ 5 

ACTIVITY DIAGRAM ............................................................................................................................. 6 

STATE DIAGRAM ................................................................................................................................. 7 

CLASS DIAGRAM .................................................................................................................................. 7 

SEQUENCE DIAGRAM .......................................................................................................................... 8 

SOURCE CODE ......................................................................................................................................... 9 

SCREENSHOTS ....................................................................................................................................... 14 

 

 

 

 

 

 

 

 

 

 



High Concept  

 

One Liner:  
Playing responsible and safe Karl has to obey and follow the traffic rules and regulations of 

the road. Apart from following traffic rules Karl has to avoid hitting the upcoming traffic or 

obstacles that will make Karl break traffic rules. The longer Karl can stay on road without 

breaking the traffic rules the higher the score he will get. 

 

Core Tenets: 
Cru zing along the traffic and following the rules of the road. Karl must also keep a look out 

for traffic cops and always maintain an appropriate speed. To do so he has the ability to 

brake and control his speed but has to also make sure he has enough fuel to catch up 

speed. 

 Speed Check Posts 

 All Green Signals 

 Time Wrap 

 Traffic cross roads 

 Rail way impact 

 

Game Genre 
This is an Arcade Driving Game. 

 

Re-playability 
The games re-playability depends on the player. He can play the game again if he or she 

isn’t satisfied with their score and wants to get a higher score in-order to beat their friends 

score. A player would also want to play the game again if she or he likes the UI, the games 

audio or even the visual appeal of the game. The Player can collect coins to buy new 

vehicles to try out and use in game. All these options give the player a reason to play again 

and thus making the game re-playable. 

 

 

Target Audience 
The game is targeted to players of the age 13 and above. The games adventurous, 

challenging and is having a very cartoonish appeal. The game is a lot fun and interesting 

and challenges players to try getting a top score. Although the game targeted for teens and 

adults, the game provides a learning experience for everyone to drive safe and follow rules 

on the road. It also teaches us what happens when we do not follow rules and the penalty 

we face. 

 



 

Game Play  
Karl is found cru zing on a busy road. The player plays Karl and helps him avoid the 

incoming traffic and follows the rules of Road. By playing safe and keeping the rules in mind 

the player has to try traveling the longest distance possible and getting a high score. For 

ever traffic rule Karl breaks his score will be misused. He will also have to collect fuel along 

the road to fill his fuel bar so that he doesn’t stop on the way. If Karl runs out of fuel and 

stops, cars behind him will crash into him.  

 

Gameplay & Game Mechanics: 
The gameplay of the game is very simple. The player has to avoid the floating cars and other 

obstacles. It is an endless running game. The player has swipe option to change lanes and avoid 

obstacles. 

 The game mechanics are the swipe controls for the character movement and top scroll for 

changing the gravity from positive to negative the either way around. 

Character Description: 

Name: 
Zlosh 

Description:  
 The character is in a futuristic world with all the flying cars with the help of magnetic field. 

The character has 3 major parts in him which look like tyre. There is a main tyre and two small tyre 

helping it for directions. These tyres are connected with a flexible rods. The character is also floating 

with magnetic field. 

Modelling Description: 
 The character is modelled with the lowest Polly on the main tyres and a small rod type 

keeping them in contact with all the tyres. 

Animation Description: 
 The animation cycles required for this games are idle cycle where the character is just still 

with his tyre rotating. There is a move cycle where the character bends slightly towards the sides 

and comes back to normal position. Flip animation where the character turns totally upside down. 

These are the animations required. 

Level Description: 
 The level has an unending track with some obstructers on the path like the floating car and 

light lamp. The player is made to stay still in the level and the prefabs and other models are made to 

move in the level. For the repetition of the path some Java scripts and C# scripts are used. The 

obstacles are placed properly with proper spacing so that the character has some place to stand. . 

The score system in the level is quite simple as long as the player tries to stay alive his points go on 

increasing. The sore is calculated on the distance and pick-ups. 

 



UML DIAGRAMS 

USE CASE DIAGRAM 
 

Description: The below diagram represents the actions, user can performed in the game. This 
diagram helps us to know all the actions user can perform in the game.  

 
Diagram: 
 

 

 
 



ACTIVITY DIAGRAM 

 
Description: Activity Diagram is used to show the game-play mechanics working parallel.  
 
Diagram: 
 
 

 
 
 
 
 



STATE DIAGRAM 

 
Description: The diagram represents States of the Player. Activity Diagram helps us to know what 
activities can be performed by a Player or an AI.  
 
Diagram: 

 
 
 
 

CLASS DIAGRAM 
 
Description: The below diagram represents the class diagram. Then some important variables in the 
class and then functions declared in the class.  
 
Diagram: 
 

 



SEQUENCE DIAGRAM 

 
Description: Sequence Diagram helps user to know the interaction between Player and the varies 
Puzzles in the game.  
 
Diagram: 
 

 

 
 

 

 

 

 

 

 

 

 

 

 



SOURCE CODE 
 

SS_Camera.cs 

public class SS_Camera : MonoBehaviour { 
  
    public Transform target; 
    public float smooth = 0.3f; 
    public float distanceZ = 10.0f; 
 public float distanceY = 5.0f; 
    private float yVelocity = 0.0f; 
 Vector3 cur_position; 
 // Use this for initialization 
 void Start () { 
   Vector3 cur_position = new Vector3 (target.position.x, distanceY, distanceZ); 
 } 
  
 // Update is called once per frame 
 
    void Update()  
 { 
  if(target==null) 
   return;  
    
        float yAngle = Mathf.SmoothDampAngle(transform.eulerAngles.y, 
target.eulerAngles.y, ref yVelocity, smooth); 
        cur_position = new Vector3 (cur_position.x, distanceY, target.position.z); 
        cur_position += new Vector3(0.0f, 0.0f, -distanceZ); 
        transform.position = cur_position; 
        transform.LookAt(target); 
    } 
} 

 

Controller.js 

var Swipe : boolean; 
var DistanceX : float;   //0.675 
var DistanceY : float; 
var target : GameObject; 
var Speed : float; 
var playing : boolean; 
var counterX : int; 
var counterY : int; 
var flip : boolean; 
var elap : float; 
var return_delay : float; 
var targetRotation : Quaternion; 
static var isDead : boolean;  
static var score : float; 
 
function Start () { 
counterX = 0; 
counterY = 0; 
targetRotation = Quaternion.identity; 
score = 0; 
isDead = false; 
} 
 
function OnCollisionEnter(coll : Collision) 



{ 
if(coll.gameObject.tag == "Collide") 
 isDead = true; 
} 
 
function Update () { 
  
if(animation.IsPlaying("Right") || animation.IsPlaying("Left")) 
 playing = true; 
else 
 playing = false; 
   
     
if(!playing) 
 animation.Play("Idle"); 
 
if(this.counterX == 2 || this.counterX == -2) 
{ 
 
elap += Time.deltaTime; 
 if(this.elap > return_delay) 
 { 
  this.elap = 0; 
  if(counterX == 2) 
  { 
  this.target.transform.position -= Vector3(this.DistanceX,0,0); 
  counterX-=1; 
  } 
  if(counterX == -2) 
  { 
  this.target.transform.position += Vector3(this.DistanceX,0,0); 
  counterX+=1; 
  } 
 } 
} 
else 
 this.elap = 0; 
  
this.transform.position = Vector3.Lerp(this.transform.position, 
this.target.transform.position, Speed*Time.deltaTime); 
if(this.flip) 
{ 
 this.transform.rotation = Quaternion.RotateTowards(this.transform.rotation, 
this.targetRotation,500*Time.deltaTime); 
} 
 
//PC Controls 
if(!playing) 
{ 
 if(Input.GetKeyDown(KeyCode.D) && counterX < 2) 
 { 
  this.target.transform.position += Vector3(this.DistanceX,0,0); 
  animation.CrossFade("Right"); 
  counterX += 1; 
 } 
     
 if(Input.GetKeyDown(KeyCode.A) && counterX > -2) 
 { 
  this.target.transform.position -= Vector3(this.DistanceX,0,0); 
  animation.CrossFade("Left"); 
  counterX -= 1; 
 } 



 
 if(Input.GetKeyDown(KeyCode.W) && counterY < 1) 
 { 
  this.target.transform.position += Vector3(0,this.DistanceY,0); 
  this.targetRotation *= Quaternion.Euler(0,0,180); 
  flip = true; 
  counterY += 1; 
 } 
 if(Input.GetKeyDown(KeyCode.S) && counterY > 0) 
 { 
  this.target.transform.position -= Vector3(0,this.DistanceY,0); 
  this.targetRotation *= Quaternion.Euler(0,0,180); 
  flip = true; 
  counterY -= 1; 
 } 
} 
 
//Android Touch/Swipe Controls 
if(Input.touchCount > 0) 
{ 
 var touch : Touch; 
 touch = Input.GetTouch(0); 
 if(touch.phase == TouchPhase.Began) 
  Swipe = true; 
 if(touch.phase == TouchPhase.Moved) 
 { 
  if(this.Swipe) 
  { 
   if(touch.deltaPosition.x > 10 && counterX < 2) 
   { 
    this.target.transform.position += 
Vector3(this.DistanceX,0,0); 
    animation.CrossFade("Right"); 
    counterX += 1; 
    Swipe = false; 
   } 
     
   if(touch.deltaPosition.x < -10 && counterX > -2) 
   { 
    this.target.transform.position -= 
Vector3(this.DistanceX,0,0); 
    animation.CrossFade("Left"); 
    Swipe = false; 
    counterX -= 1; 
   } 
    
   if(touch.deltaPosition.y > 10 && counterY < 1) 
   { 
    this.target.transform.position += 
Vector3(0,this.DistanceY,0); 
    this.targetRotation *= Quaternion.Euler(0,0,180); 
    flip = true; 
    counterY += 1; 
    Swipe = false; 
   } 
    
   if(touch.deltaPosition.y < -10 && counterY > 0) 
   { 
    this.target.transform.position -= 
Vector3(0,this.DistanceY,0); 
    this.targetRotation *= Quaternion.Euler(0,0,180); 
    flip = true; 



    counterY -= 1; 
    Swipe = false; 
   } 
  } 
 } 
 if(touch.phase == TouchPhase.Ended) 
  Swipe = false; 
} 
} 

 

Destr.cs 

public class Destr : MonoBehaviour { 
 
 // Use this for initialization 
 void Start () { 
  
 } 
 void OnTriggerEnter(Collider obj) 
 {  
  Debug.Log("Destroy Triggerd"); 
  if(obj.gameObject.tag == "Player") 
  { 
   // Destroy the Prefab 
   Debug.Log("Destroyed"); 
   DestroyObject(this.transform.parent.gameObject);  
  } 
 } 
 // Update is called once per frame 
 void Update () { 
  
 } 
} 

 

Display.js 

var delay : float; 
var Dead_Delay : float; 
private var Dead_elapsed : float; 
private var elapsed : float; 
 
function Start () { 
 
} 
 
function Update () { 
 
elapsed += Time.deltaTime; 
this.guiText.text = ""+Controller.score; 
if(this.elapsed > delay && !Controller.isDead) 
{ 
 elapsed = 0; 
 Controller.score++; 
} 
 
if(Controller.isDead) 
{ 
 Dead_elapsed += Time.deltaTime; 
 if(this.Dead_elapsed > this.Dead_Delay) 



 { 
  Dead_elapsed = 0; 
  Application.LoadLevel("GameOver"); 
 } 
} 
} 
 

Platform_Manager.cs 

public class Platform_Manager : MonoBehaviour { 
 public static bool move = true; 
 public float speed; 
 // Update is called once per frame 
 void Update () { 
  if(move) 
  { 
  // Translate the platform along Z=axis 
         transform.Translate(-Vector3.forward * Time.deltaTime * speed); 
     } 
 } 
  
  
} 
 
 

Respawn.cs 

public class Respawn : MonoBehaviour { 
 
 public GameObject Platform_Prefab; 
 public GameObject[] tempCar; 
 public GameObject tempSet; 
 public GameObject[] Set; 
  
 // Use this for initialization 
 void Start () { 
 tempCar = GameObject.FindGameObjectsWithTag("Car"); 
 foreach (GameObject obj in tempCar) 
 { 
  if(obj.transform.parent == this.transform.parent) 
  { 
   Destroy(obj); 
  } 
 } 
 int rand = Random.Range(0,2); 
 tempSet = (GameObject)Instantiate(Set[rand], 
this.transform.parent.transform.position,Quaternion.identity); 
 tempSet.transform.parent = this.transform.parent.transform; 
 } 
  
 void OnTriggerEnter(Collider obj) 
 { 
  Debug.Log("Triggred!! " + obj.gameObject.name); 
  if(obj.gameObject.tag == "Player") 
  { 
   Instantiate(Platform_Prefab, 
transform.parent.FindChild("Spawn_Point").transform.position,Quaternion.identity); 
   Debug.Log("Spawned!!!!"); 
  } 
 } 
} 
 



SCREENSHOTS 
 
 

 
 
 
 

 
 

 
 
 



 

 
 
 
 
 
 

 
 
 
 
 



 
 
 

 
 
 
 
 
 
 

 
 

 

 



 

 

 
 

 

 


